Adverse Functional Significance of Cardiac Beta\textsubscript{3}-Adrenergic Receptor Activation on Left Ventricular Contractile Performance in Conscious, Chronically-Instrumented Dogs with Pacing-Induced Heart Failure

Author Block: Heng-Jie Cheng, Xiaowei Zhang, Tiankai Li, Zhi Zhang, Dwight D Deal, James E Jordan, Zhe Chen, Wake Forest Sch of Med, Winston-Salem, NC; John Adams, Arena Pharmaceuticals, Inc, San Diego, CA; Che Ping Cheng, Wake Forest Sch of Med, Winston-Salem, NC

Abstract:

Background. In heart failure (HF), the cardiac β\textsubscript{3}-adrenergic receptor (AR)-mediated inhibitory pathway is up-regulated, suggesting a contributing role of β\textsubscript{3}-AR activation on HF progression. However, its precise role is still unclear due to lack of β\textsubscript{3}-AR-selective antagonists (β\textsubscript{3}-ANT). APD418 is a novel β\textsubscript{3}-ANT with high affinity and selectivity for human β\textsubscript{3}-AR. We hypothesize that up-regulation of β\textsubscript{3}-AR is detrimental and APD418 will improve left ventricular (LV) and myocyte function in HF.

Method. We measured LV functional responses immediately (0 min) and 10 min after termination APD418 infusion (1.9 mg/kg, i.v. for 10 min) in 7 conscious dogs before and after pacing-induced HF, and compared isolated HF myocyte contractile responses to β\textsubscript{3}-AR stimulation with or without APD418 treatment.

Results. In both normal (N) and HF, similar plasma APD418 levels were achieved at 0 (N: 3908 vs HF: 3806 ng/ml) and 10 min (2719 vs 2755 ng/ml) with the treatment, which paralleled the increased LV contractility (E\textsubscript{ES}) [N: from 6.6 (baseline) to 7.8 and 7.4; HF: from 4.3 to 6.2 and 5.5 mmHg/ml], and decreased time constant of LV relaxation (N: from 28.2 to 26.0 and 27.3; HF: from 45.9 to 36.6 and 39.8 ms) (P<0.05). Heart rate, LV end-systolic pressure, and end-diastolic volume were unchanged. In HF, APD418 caused increases in E\textsubscript{ES} which were significantly greater and accompanied by improved LV-arterial coupling and mechanical efficiency (0.55 vs 0.46). In isolated HF LV myocytes, stimulation with β\textsubscript{3}-AR agonist BRL-37344 (BRL, 10-8 M) significantly decreased cell contraction (dL/dtmax: 49.7 vs 67.2 μm/s) and relengthening (dR/dtmax: 40.5 vs 53.3 μm/s). Versus HF baseline, perfusion of nadolol (NAD, 10-5 M, a β\textsubscript{1}- and β\textsubscript{2}-ANT) caused 12% and 10% reductions in dL/dtmax and dR/dtmax. Addition of isoproterenol (10-8 M) caused further decreases in dL/dtmax (23%) and dR/dtmax (20%) (p<0.05). The BRL and isoproterenol induced negative inotropic responses were abolished by pre-treatment with APD418 (5x10-6 M).

Conclusions: This study demonstrated that in pacing-induced HF, β\textsubscript{3}-AR activation exacerbated LV and myocyte systolic and diastolic dysfunction; whereas, β\textsubscript{3}-ANT with APD418 caused beneficial actions supporting the usefulness of selective β\textsubscript{3}-ANT as a new therapeutic option for HF.

Author Disclosure Information:

H. Cheng: Research Grant; Modest; NIH (R01AG049770). Other: Modest; Arena Pharm GTS 4299. **X. Zhang:** None. **T. Li:** None. **Z. Zhang:** None. **D.D. Deal:** None. **J.E. Jordan:** None. **Z. Chen:** None. **J. Adams:** Employment; Significant; Arena Pharmaceuticals, Inc. **C. Cheng:** Research Grant; Modest; NIH (R01AG049770). Other; Modest; Arena Pharm GTS 4299.